Adaptive Treatment Allocation and the Multi-Armed Bandit Problem
نویسندگان
چکیده
منابع مشابه
Combinatorial Multi-Objective Multi-Armed Bandit Problem
In this paper, we introduce the COmbinatorial Multi-Objective Multi-Armed Bandit (COMOMAB) problem that captures the challenges of combinatorial and multi-objective online learning simultaneously. In this setting, the goal of the learner is to choose an action at each time, whose reward vector is a linear combination of the reward vectors of the arms in the action, to learn the set of super Par...
متن کاملThe multi-armed bandit problem with covariates
We consider a multi-armed bandit problem in a setting where each arm produces a noisy reward realization which depends on an observable random covariate. As opposed to the traditional static multi-armed bandit problem, this setting allows for dynamically changing rewards that better describe applications where side information is available. We adopt a nonparametric model where the expected rewa...
متن کاملAlgorithms for the multi-armed bandit problem
The stochastic multi-armed bandit problem is an important model for studying the explorationexploitation tradeoff in reinforcement learning. Although many algorithms for the problem are well-understood theoretically, empirical confirmation of their effectiveness is generally scarce. This paper presents a thorough empirical study of the most popular multi-armed bandit algorithms. Three important...
متن کاملThe Budgeted Multi-armed Bandit Problem
The following coins problem is a version of a multi-armed bandit problem where one has to select from among a set of objects, say classifiers, after an experimentation phase that is constrained by a time or cost budget. The question is how to spend the budget. The problem involves pure exploration only, differentiating it from typical multi-armed bandit problems involving an exploration/exploit...
متن کاملMulti-armed bandit problem with precedence relations
Abstract: Consider a multi-phase project management problem where the decision maker needs to deal with two issues: (a) how to allocate resources to projects within each phase, and (b) when to enter the next phase, so that the total expected reward is as large as possible. We formulate the problem as a multi-armed bandit problem with precedence relations. In Chan, Fuh and Hu (2005), a class of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 1987
ISSN: 0090-5364
DOI: 10.1214/aos/1176350495